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Abstract 

Background: Trial data often does not cover a sufficiently long period of  time to truly capture time-to-
event endpoints, however, Health Technology Assessment (HTA) bodies often require overall survival (OS) 
and progression-free survival (PFS) estimates. Often, significant survival effects are found beyond the time 
period observed in clinical trials, thus, extrapolation of  trial results is required for health economic and HTA 
evaluations.

Objectives: This paper looks at different techniques that can be used to extrapolate trial data, as well as criteria 
that should be used to select the most appropriate technique. Using these insights a formal decision-making 
criteria will be established, allowing users to follow a systematic approach to extrapolating survival estimates. 
The techniques are then applied to a metastatic breast cancer (MBC) example.

Methods: A criterion-based guide was devised to allow the accurate extrapolation and justification of  survival 
estimates in a MBC study comparing eribulin (Halaven) monotherapy with treatment of  their (patient’s) 
physician’s choice (TPC). Parametric and piecewise models are used to extrapolate survival estimates, and 
statistical as well as visual tests are used to decide the most appropriate modelling technique.

Results: In the case study presented, the optimal model was identified as the Accelerated Failure Time (AFT) 
Parametric model using a Gamma distribution with a treatment covariate for OS, and the Kaplan-Meier survival 
estimates for PFS.

Conclusions: Survival estimates must be extrapolated to a time point such that the benefits of  a therapy can 
be clearly demonstrated. A systematic approach combined with a formal decision-making structure should be 
used to minimize the potential for bias as well as making the process transparent.

Keywords: survival analysis, parametric extrapolation, piecewise models, criteria, metastatic breast cancer, 
Health Technology Assessment
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BACKGROUND

There is a growing need to extrapolate survival curves when the trial data prior to cut-off  does not provide 
enough information on overall survival (OS) and progression free survival (PFS).1 Health Technology 
Assessment (HTA) bodies require manufacturers of  new health technologies to demonstrate the value of  the 
product in terms of  OS and PFS gain.2 As a significant portion of  the clinical value is reflected in the tail2 of  
the survival curve, it is important to understand the different extrapolation techniques in order to ensure that 
the value of  a new intervention can be appropriately presented. 

The primary objective of  this analysis is to compare extrapolation techniques by assessing the incremental 
difference between treatment arms. In addition, this analysis will determine the appropriate technique to be 
used in breast cancer to estimate OS and PFS for the dataset used. The mean incremental difference is used in 
this study because total cost or total survival can be computed from the mean3, and because extreme values can 
be accounted for (unlike when using the median or other statistics).4,5,6

Literature Review for Extrapolation of  Survival in Economic mModels

Clinical trials can be limited in the data they provide as a result of  time and/or budget constraints.  Specifically, 
many trial results are published before the endpoint of  interest (such as OS) is reached for all participants.7 
This can cause a “tip of  the iceberg” effect where a significant proportion of  the benefit is hidden after the trial 
end. In these cases, extrapolation of  the available evidence is necessary to completely measure survival. Bias in 
the endpoint related to the effect of  the assessment schedule is also a potential justification for extrapolation.8 
This bias is related to the data collection process and creates a stair-step look in the survival or PFS curves as 
the data is not collected continuously.

Traditionally, extrapolation involves the use of  parametric models based on the regression analysis of  patient-
level data using either the exponential, Weibull, Log-normal, Log-logistic, Gamma or Gompertz distributions. 
Other model classes, such as piecewise models which are more flexible than traditional parametric models, are 
rarely used even if  they can offer robust results in some cases.1 

The difference between the two arms in the trial is often based on a treatment covariate. Some argue that both 
the shape and scale of  the extrapolated function has to be modelled with precision, which suggests that a 
treatment covariate would not always be optimal.9  

Different tests can be used to validate the optimal model class as well as the optimal model type or distribution 
within a class. These include visual examination of  the hazard rate and the fit of  the extrapolated survival.10  The 
National Institute for Health and Care Excellence Decision Support Unit (NICE DSU) technical document 
explains that many studies do not present a solid case for their model choice. Another criticism is that the 
assumption of  proportional hazards is often used without justification.11 Also, uncertainty in the extrapolated 
estimates is often not modelled.1 

The Case Study

OS was the primary endpoint in a Phase 3 open-label randomized study of  eribulin (Halaven) monotherapy 
versus a treatment of  physician’s choice (TPC) in patients with metastatic breast cancer (Eisai Metastatic 
Breast Cancer Study Assessing Physician’s Choice versus Eribulin [EMBRACE] trial).  In this study, women 
with locally recurrent or metastatic breast cancer were randomly given eribulin mesilate or TPC. The study



JHEORTremblay G, et al.

149JHEOR 2015;2(2):147-60 | www.jheor.org

is registered at ClinicalTrials.gov, #NCT00388726.12 The study met its primary objective, showing a significant 
increase in OS for eribulin patients compared to TPC patients. Median overall survival was 13.1 months (11.8-
14.3) in patients receiving eribulin and 10.6 months (95% confidence interval [CI] 9.3-12.5) in patients receiving 
TPC. These results also showed a significant increase in OS for eribulin compared to TPC patients, with a 
median OS of  13.2 months (95% CI 12.1-14.4) versus 10.5 months (9.2-12.0) with TPC. 

METHODOLOGY

General Approach and Decision-making Criteria

The general approach described and used in this study was inspired by the NICE DSU Technical Report.2 
When there is an extrapolation need there are three steps to the approach, detailed in Appendix A. 

The first step is the initial selection of  the survival model before extrapolation has taken place. This tends to 
involve plotting the log-cumulative hazard of  all treatment options and then using visual inspection to determine 
the appropriate model. The second step involves extrapolating survival results by using the appropriate model. 
In this stage, survival estimates are extrapolated to the end of  the time horizon of  interest for complete 
parametric models. Finally, the third step is to use statistical measures and decision criteria to select the model 
that most accurately models survival. Such criteria should not be seen as the answer to which model is most 
appropriate; instead they should be used to guide decisions. 

The Model Classes

In this analysis, three model classes are discussed. The first model class, the proportional hazards (PH) model, 
is relevant when the treatment effect is proportional over time. If  this is true, the log-cumulative hazard plots 
of  two (or more) arms will be parallel.2  To model this hazard rate relation to time we include a treatment arm 
covariate which creates a “pattern” of  hazard difference between each treatment, assuming that the hazard 
differential is constant over time. This is because the PH condition states that covariates are multiplicatively 
related to hazard. This class of  model suggests a stable difference between each treatment arm.

In this first model class, we only considered (1) PH parametric models with a treatment covariate. Such survival 
modelling consists of  fitting a distribution to the data, with the most common distributions in survival analysis 
including the Weibull, Exponential and Gompertz distributions.  

Many economic analyses use a PH model to generate the marginal difference between treatment curves by 
applying a hazard ratio of  treatment difference to the control arm of  the trial.11 

Model type (1) will be applied using three PH distributional forms; Weibull, Exponential and Gompertz. The 
Weibull distribution is monotonically increasing, decreasing or constant over time. 

The next model class is recommended when log-cumulative hazard plots are not parallel, but relatively straight. 
For this model class this study focuses on (2) Accelerated Failure Time (AFT) models with a treatment covariate 
and (3) individual parametric models without a treatment covariate.  Unlike PH models, AFT models assume 
that the effect of  a covariate is to accelerate (or decelerate) the hazard by a constant, acting like a time-scaling 
factor.13 Individual models are parametric models that do not use a treatment covariate, meaning the extrapolation 
for each arm is estimated separately. Individual models will also fit a single model type to the whole time 
frame of  interest. Individual models are less flexible than piecewise models (discussed later), as the equation



JHEOR Tremblay G, et al.

150 JHEOR 2015;2(2):147-60 | www.jheor.org

must fit the whole pre- and post-trial cut-off  periods, but they avoid problems that can arise when transitioning 
between the pre- and post-trial cut-off. 

With the previous models, survival estimates were extrapolated from the same analysis for both arms using a 
“treatment effect” covariate to generate the survival difference. With individual models each treatment arm will 
have survival results extrapolated on its own basis, allowing different distributions to be applied to each arm. 
Individual models can result in survival estimates for different treatment arms crossing. Sometimes, it is not 
clinically or statistically appropriate that this happens. However, because the shape and slope are determined by 
the pre cut-off  trial data2 the parametric extrapolation in the post cut-off  period can lead to unrealistic cross-
over. In other cases, the cross-over can be very important (for example, if  cross-over occurs before the trial 
cut-off  individual’s models should be used).

The final class discussed in this study includes piecewise and other flexible models. Such models are flexible 
enough to perform extrapolation when hazard rates are not constant over time, are monotonic or are non-
monotonic.2 Piecewise models are often amendments or hybrids, composed of  one or more forms of  survival 
modelling, including Kaplan-Meier survivor functions or parametric extrapolation. In 2011, only 2% of  
economic models used to estimate mean survival in NICE Technology Appraisals included piecewise survival 
extrapolation.2 Piecewise modelling is recommended in the NICE DSU Technical Support Document on 
extrapolation when log-cumulative hazard plots lines are not straight. Non-straight lines mean that the hazard 
rate is time-dependent, and as such the proportional hazard assumption is not respected. This can be confirmed 
through the use of  a global proportional hazard test. 

Because piecewise modelling uses different extrapolation techniques at different time points, this kind 
of  modelling could be less effective at extrapolating beyond the observed data.2 In fact, piecewise survival 
mapping is often dynamic/non-constant or split into extrapolated sections separated by knots, which reduce 
its effectiveness at forecasting the survival with a proper tail, even if  it can be effective at fitting the best curve 
to the observed data.2 In this study, two techniques of  this model class were examined. The first technique 
involves attaching parametric extrapolation survival estimates to the observed Kaplan-Meier curve.14 The 
second technique used was the Royston & Parmar spline technique.15

The first model type tested in this class is (4) Kaplan-Meier survival function with an extrapolated tail. In 
this method, the observed data until trial cut-off  (the first 34 months in the case study) are used to plot the 
Kaplan-Meier survival function. The first 34 months are therefore not extrapolated and the limitations of  the 
Kaplan-Meier Survivor function remain valid. The data is then extrapolated past month 34, creating a ‘tail’ 
to the survival curve which is attached to the end of  the Kaplan-Meier survival function. The tail is forecast 
using parametric models whilst assuming that the cut-off  (in this example month 34) is in fact the first time 
period (month 0). Therefore, month 35 (cut-off  + 1) is modelled assuming that it is month 1. To do this, the 
survivor function at month 34 is assumed to be at 100%. As an example, if  20% of  the patients are still alive 
at month 34, and the parametric function indicates that the survival should be 100% at time 0 and 90% at time 
1, the extrapolation of  survival will be 18% (20% X 90%) at time “trial cut-off  + 1”, or the 35th month. The 
extrapolated hazard rate could be constant or not, but also monotonic and could potentially lead to a change 
in hazard at the transition between the Kaplan-Meier curve and the extrapolated tail (between month 34 and 
35). This puts emphasis on the marginal gain prior to extrapolation, which decreases the risk of  exaggerating 
the extrapolated tail benefit.2

The second type of  model tested within this class are (5) Royston and Parmar flexible models.15 Royston 
and Parmar developed flexible parametric models, also called spline-based models, where the extrapolation
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is adjusted to have a different shape between a number of  knots.16 The number of  knots, which define the 
boundary of  the extrapolated section, can vary, but it is recommended to use six or less, creating seven areas. 
Adding knots impacts the degree of  freedom and a large number of  knots potentially adds more uncertainty 
than benefit.16

The classic method is to place the knots at predefined percentiles depending on the number of  knots, with the 
distance between each knot being identical.17 A second method would be to run 100 random knot placements 
and select the placements that give the lowest deviance (best Akaike information criterion [AIC], Bayesian 
information criterion [BIC]). As the selection is random, there is no guarantee that the random placement 
selected is the “best” one, so we decided to use a Durrleman & Simon approach (the classic method). To select 
the optimal number of  knots, an AIC/BIC comparison was used as in the Royston paper.16 Two types of  
models can be used within the Royston & Parmar framework; the PH model using a Weibull distribution and 
the proportional odd (PO) model, using a log-logistic distribution.15  

Decision Criteria
 
This section establishes decision criteria for selecting the optimal model for use in extrapolating outcomes.

First, analyzing the data using statistical tests and visual inspection is necessary to understand the dataset and 
help guide modelers toward the best-fitting model. These occur before extrapolation has taken place.

Criterion 1 – Proportional Hazard Assumption Testing: The PH assumption has to be strongly supported by 
the log-cumulative hazard plots and the PH global statistics if  the selected model advocates this assumption.11,2,18

Most published work on survival extrapolation does not use the log-cumulative hazard plots to evaluate the 
PH assumption2, even though it is an important decision-making criteria for the best-fitting model11 and is 
recommended in the NICE DSU technical report. First, if  the log-cumulative hazard line is not straight then 
the hazard is not constant. Secondly, if  the log-cumulative hazard plots of  two treatment arms are parallel, then 
the hazard rate in both arms have a similar relationship to time. These two tests help to identify which class 
of  model is preferable. The log cumulative hazard lines of  the arms may cross, suggesting that one arm has 
an acceleration of  the hazard rate at some point and giving a converging (or diverging) effect on the survival 
functions. In this case the use of  a treatment effect covariate, which assumes a stable relative difference, will 
cause an extrapolation bias. 

This study added a systematic process to assess the PH assumption, using a statistical test in addition to visual 
examination. We used the PH global test, which can be used to evaluate the goodness of  fit of  the data using 
the Schoenfeld residuals.18 This method can be considered more objective than a plot comparison by visual 
inspection, which does not follow a systematic approach.18 A significant result for this test indicates a deviation 
from the PH assumption. 

Once the tests of  criterion 1 are performed, the results of  the extrapolation can be compared, and criteria 2 to 
5 allow us to select the best model.

Criterion 2 – Extrapolated Hazard Function fitting in Time and between Trial Arms: The hazard rates 
have a similar time relation pattern between the extrapolation function and the Kaplan-Meier survivor function. 
The characteristic of  the relation between the hazard rate of  both arms are replicated by the modelling technique 
selected e.g. crossing lines would suggest an individual parametric model. 
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Visual examination is one of  the most common “fitting” comparison methods in survival extrapolation.2 Two 
types of  visual examination should be performed to ensure proper fitting. First, the fitting of  the extrapolated 
hazard curve to the Kaplan-Meier hazard curve must be examined. This allows the modeler to see if  a 
characteristic of  the curve is not represented in the distributional form used, and guides towards the most 
accurate model if  so. The second method of  visual inspection involves identifying if  the relationship between 
the extrapolated hazard function within the treatment arms fit well with the hazard relationship examined in 
criterion 1. Models where the hazard patterns seem to fit should be prioritized.

Criterion 3 – Minimal AIC and BIC: For parametric models, the selected model must have a low AIC/BIC 
to demonstrate its goodness-of-fit to the survival curve in the pre-extrapolation period.   

AIC and BIC are fitting statistics that are often used to compare parametric models. They are a measure of  
the relative quality of  the statistical model, but models are rarely exclusively selected based on this method.11 
Nevertheless, this technique represents an effective way to evaluate the general fitting of  the model based on 
the data available, but should be used in combination with other selection criteria. The tests from criterion 1 
to 3 have one major flaw:  As these tests focus on the comparison of  the pre-extrapolation data, they do not 
test the post-extrapolation period.2 The post-extrapolation period could affect the estimated survival results 
and cause significant bias. Therefore, other comparison methods are needed. In this analysis, we included two 
additional methods, which are described in criterion 4 and 5.

Criterion 4 – Uncertainty in the Results: Uncertainty should be accounted for when selecting the best 
model, as a high uncertainty would be a sign of  low robustness.

To assess uncertainty, the CIs surrounding the marginal difference in survival between the treatment arms are 
used. Uncertainty can be measured using a bootstrap method to evaluate the CIs of  the estimates.8   

The nature of  the different extrapolation techniques can have an impact on the estimates. Nevertheless, experts 
should be careful in selecting models with wide CIs.

Criterion 5 – Similitude of  Pre-extrapolation Marginal Gain and Realism of  the Extrapolated Marginal 
Gain: The realism of  the marginal gain should be accounted for when selecting the best model as an unrealistic 
marginal gain would create bias in the economic analysis.

Criterion 5 is the simple comparison of  the pre and post extrapolation area under the curve. In the best-case 
scenario, the pre-extrapolation result has a strong AIC/BIC fit, and for the post-extrapolation period the 
marginal gain should not overestimate the difference between the curves. An inflated difference between the 
two arms caused by an erroneous extrapolation could create a bias in the analysis.

To evaluate the realism of  the post-extrapolation survival gain, we used a ‘rule-of-thumb’, stating that the ratio 
of  the marginal relative difference in the extrapolated period (post cut-off) divided by the number of  months 
post-cut-off  should not be higher than the ratio of  marginal difference on the number of  months in the 
pre-extrapolation period. In other words, the average “rate of  survival gain” per month between treatments 
should be equal or inferior in the post-extrapolation period compared to the pre-extrapolation period. This 
simple calculation provides a maximum realistic gap between the two arms, but it should only be used as a 
rule-of-thumb. As an example, if  the marginal difference in the pre-extrapolation period is two months over 
a 34 months period, the “rate of  survival gain” is 0.0588 of  marginal gain per month. If  we assume that the 
result of  the extrapolation over 60 months is 3 months difference between treatments, then 1 month gain
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is generated over the last 26 months, which gives a “rate of  survival gain” of  0.0384. The rate is smaller than 
the pre-extrapolation “rate of  survival gain,” and therefore satisfies the rule of  thumb. Another characteristic 
that should be looked at is the realism of  the total marginal gain. If  the total marginal gain is lower than the 
pre-extrapolation marginal gain, it should be explained in detail using the hazard trend or by showing a crossing 
point in the survival data. 

METASTATIC BREAST CANCER CASE STUDY

At the last trial observation, 22.65% of  patients in the eribulin arm remained alive, compared to 18.47% for 
the TPC arm. The primary reason for justifying extrapolation is a lack of  trial data for a sufficiently long period 
that is able to highlight marginal gains in overall survival. Because the uncertainty in survival increases as we 
move to the right of  a Kaplan-Meier curve, it is sometimes suggested that the last observations be removed as 
they can significantly affect the results of  extrapolation, however the NICE DSU does not recommend this.2 
In this case study, the data analysis stopped at the trial cut-off, resulting in the exclusion of  one patient. The 
survival curve quickly loses its precision after the trial cut-off  date and sharply falls to 4.49% when the last 
uncensored eribulin patient dies, even if  22.65% of  eribulin patients were still alive at the end of  the trial. The 
actual difference between the survival rates in the trial was at 4.2% in favor of  eribulin, and the survival results 
at the trial cut-off  was respectively at 13.5% and 6.4% for eribulin and TPC, which seemed more realistic for 
the extrapolation. As the curves are not crossing in the actual data, such crossing generated by one patient 
would generate a bias when extrapolating using the piecewise models attached at the tail of  the Kaplan-Meier 
survivor function (See Appendix B).

With regard to PFS, all patients had reached progression at month 16 in the eribulin group and at month 18 in 
the TPC group. As such, there is no need for extrapolation post-cut-off  in this case as each individual reached 
the endpoint within the observed trial period. In this case, the Kaplan-Meier survival function proved to be the 
optimal function to measure PFS in an economic analysis (see Appendix B).

The log-cumulative hazard plots were then analyzed to detect the hazard patterns and identify the optimal 
model class (Figure 1). For OS, the lines are relatively straight, and relatively parallel. However, the hazard plots 
for both treatment arms cross, diverge, and then converge again, meaning the validity of  all models should be 
checked using the other decision making criteria. The global proportional hazard test based on residuals does 
not show a significant result (p-value=0.0845), which indicates that the curves do not deviate from the PH 
assumption, but the p-value is far from convincing enough to justify using the PH assumption with no other 
justification.

Figure 1. Log-cumulative Hazard Plots of  Overall Survival and Progression-free Survival of  Eribulin Mesylate 
and TPC

TPC: treatment of  physicians choice
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Comparison of  Approach

Table 1 presents the OS results for all the extrapolation techniques examined in our general approach, along 
with statistics related to our criterion based approach.

Selection based on Decision Criteria

Criterion 1 – PH Assumption Testing: The PH assumption appears to be a fair assumption for overall 
survival, as tested by visual inspection and the global statistics. Regardless, the crossing of  both lines and an 
apparent convergence could affect the hazard results. 

As the PH assumption seems appropriate, the PH and accelerated failure time models can be used. As the 
visual analysis highlighted some potential problems with hazard rate plots, it is important to also consider the 
other model classes and types. The PH model with treatment covariates and AFT/individual models were the 
optimal model class.  The next step is to evaluate the modeling techniques by comparing extrapolation results:

When plots are parallel:

1) PH Parametric Model with Treatment Covariate: The Weibull distribution gives similar hazard patterns 
to the Kaplan-Meier function. In this analysis, a treatment covariate was included, which ensures a rational 
relationship between the hazards of  each arm (Criteria 2). The AIC/BIC evaluation indicated that the 
Weibull distribution is the best fit (Criterion 3). The level of  uncertainty is quite high, but the lower CI 
does not cross 0 (Criterion 4). Criterion 5 was tested using two “rates of  survival gain” to compare to the 
post-extrapolation rate. The first one was the Kaplan-Meier rate, which was of  0.0581 per month, and 
the second was the pre-extrapolation “rate of  survival gain” of  the extrapolation results. Criterion 5 was 
satisfied in both cases with an average of  0.016 month (Criterion 5). Furthermore, the post-extrapolation 
period respects the thumb rule and seems conservative (Criterion 5).  Results suggest that the Weibull 
distribution is the best fit for the PH models. 

When plots are not parallel:

2)   Accelerated Failure Time with Treatment Covariates: Both the Log-logistic distribution and the 
Gamma distribution have similar hazard patterns to that of  the Kaplan-Meier function and are based 
on a treatment covariate model, which ensures a rational relationship between the hazard plots of  each 
arm (Criteria 2) (Figure 2 presents an example of  the log-cumulative hazard plots for Halaven of  the 
extrapolated function to evaluate criterion 2 for the complete parametric models). The level of  uncertainty 
is lower than in the PH models (Criterion 4), and the log-logistic and Gamma distributions have the best 
AIC/BIC profile (Criterion 3). The extrapolation realism thumb rule was satisfied with an average of  
0.026 month (Criterion 5). The post extrapolation period respects the thumb rule and seems conservative 
(Criterion 5). The results suggest that the best model here uses the Gamma distribution followed by the 
Log-Logistic, but the Gamma has a more conservative marginal gain, and long tails are not to be expected 
for metastatic breast cancer - as such, we would recommend the Gamma distribution. 
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Table 1.  Overall Survival Extrapolation Results

Model 
Type

Area between the Curves Fitting Statistics

Techniques
Sub-

technique
OS Pre 
Cut-off

OS Post 
Cut-off  

Extrapolated 
Tale

Total 
Difference 

in OS

Lower 
Bound 

CI

Higher 
Bound 

CI

Fitting 
Statistics 

(AIC/BIC)

Plots are 
Parallel

(1) PH Parametric 
models with 
treatment covariate

Weibull 1.66 0.36 2.03 0.14 3.98 1947 / 1961
Exponential 1.70 0.71 2.41 0.33 5.11 2008 / 2017
Gompertz 1.63 0.24 1.87 0.10 3.53 1980 / 1994

Plots are 
not 
Parallel

(2) AFT Parametric 
models with 
treatment covariates

Log-Normal 2.22 0.80 3.02 1.26 6.57 1953 / 1967
Log-Logistic 2.20 0.68 2.88 1.34 7.11 1936 / 1950
Gamma 2.00 0.58 2.57 0.57 4.97 1936 / 1955

(3) Individual 
parametric models

Weibull 1.76 0.07 1.83 -0.26 3.93 1946 / 1962
Log-Normal 1.89 0.39 2.28 -1.41 5.96 1954 / 1969
Log-Logistic 1.88 0.22 2.10 -2.82 7.03 1936 / 1952
Exponential 1.70 0.71 2.41 -0.67 5.48 2008 / 2016
Gamma 1.79 -0.11 1.68 -2.13 5.49 1937 / 1960
Gompertz 2.62 -0.05 2.57 0.68 4.47 1980 / 1996

Plots 
are not 
Straight 
Lines: 
Consider 
Piecewise 
Models

(4) SF + parametric 
tale extrapolation

Weibull 1.98 1.06 3.04 2.74 3.39 1947/ 1961*
Log-Normal 1.98 1.09 3.07 2.86 3.32 1953/ 1967*
Log-Logistic 1.98 1.09 3.07 2.92 3.39 1936/ 1950*
Exponential 1.98 1.02 3.00 2.75 3.29 2008/ 2017*
Gamma 1.98 1.08 3.05 2.77 3.39 1936/ 1955*
Gompertz 1.98 1.05 3.03 2.74 3.36 1980/ 1994*

(5) Royston & 
Parmar flexible 
models

Weibull PH 
with 1 node 1.78 -0.07 1.72 0.15 3.52 0 / 0
Log-Logistic 
PO with 1 
node 1.77 -0.02 1.75 0.17 3.55 0 / 0

OS: overall survivial; CI: confidence interval; AIC: Akaike information criterion; BIC: Bayesian information criterion; PH: proportional 
hazard; AFT: accelerated failure time; SF: survival function; PO: proportional odd (model) 

3) Complete Parametric Extrapolation of  the Individual Model: The Log-logistic, Gamma and Weibull 
distribution have similar hazard patterns to the Kaplan-Meier estimator (Criteria 2). A converging hazard 
rate is realistic given the data, but crossing of  the survival estimates is present for some of  the distributions, 
which is not reflected in the data and would create a bias in the results (criterion 5). The level of  uncertainty 
appears very high, with the lower bound of  the CI crossing 0 for all extrapolations (Criteria 4). The AIC/
BIC evaluation indicated that the Log-logistic and Gamma distributions provide the best fit (Criterion 
3). The extrapolation realism thumb rule was satisfied with an average of  0.007 month (Criterion 5). The 
post-extrapolation period respects the thumb rule and seems very conservative, except for the Gamma 
distribution, which is negative. This negative effect can be caused by the convergence of  the hazard rate at 
the end of  the pre-extrapolation period, but the survival curve should cross post-extrapolation (Criterion 
5). Therefore, the Log-logistic distribution should be used for this model type. 
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Figure 2. Log-cumulative Plots of  the Extrapolated Function for Halaven for the Complete Parametric Models

When Plots are not straight lines:

4) Survival Function + Parametric Tail Extrapolation: Log-logistic, Gamma, and also Weibull distributions 
have similar hazard patterns to the Kaplan-Meier estimator and are based on a treatment covariate model, 
which ensure a rational relationship between the hazard of  each arms (Criteria 2). The AIC/BIC indicate 
that the Log-logistic, Gamma and Weibull distributions provide the best fit (Criterion 3). Assuming no 
uncertainty in the Kaplan-Meier portion of  the curve, the level of  uncertainty in the extrapolated section 
is limited (Criterion 4). The thumb rule was satisfied with an average of  0.040 month (Criterion 5). All 
extrapolations are close to the thumb rule threshold (Criterion 5). The Gamma distribution displays the 
best fitting profile in this extrapolation class.

5) Royston and Parmar Flexible Models: The PO and PH models offer very similar results and hazard 
patterns to the Kaplan-Meier function (Criterion 2). Both models have a good AIC/BIC profile (Criterion 
3).  The level of  uncertainty is similar to the PH models with covariates, and the CIs do not cross 0 (Criteria 
4). The extrapolation realism thumb rule was satisfied with an average of  -0.001 month (Criterion 5). Both 
models project a negative post-extrapolation difference, which is not suggested by the data (Criterion 
5). Due to the crossing problem, we would not recommend using these extrapolation techniques in this 
context. The results show that for a PH model, one knot should be used (lowest AIC and BIC), results 
are displayed in Appendix C. For the PO model, no knots should be used, which is equivalent to using an 
individual parametric model.
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Selecting the Optional Model for Overall Survival

In the optimal model class (the PH model class where plots are parallel), the Weibull model with use of  a 
treatment covariate is the superior model. In the individual and AFT model class (where plots are not parallel), 
the Gamma AFT model with use of  a treatment covariate is superior. In the Piecewise model class (plots are 
not straight lines), the Gamma tail attached to the survival function is the superior model. Among all classes, we 
would recommend the use of  a Gamma AFT model with a treatment covariate because it has a better AIC/BIC 
profile, less uncertainty and a strong realism of  the pre- and post-extrapolation area under the curve. Appendix 
D presents the model comparison based on our criteria.

DISCUSSION AND CONCLUSION

The comparison of  the different classes of  models allows us to discuss the limitations and advantages of  
each type of  model. The case study used enables us to highlight some concerns about different types of  
methodology, but similar studies should be performed using this technique.

Below are some key pieces of  information discussed through this study:

• Kaplan-Meier survivor functions can be widely affected by the last observation, and do not offer any form 
of  extrapolation beyond the last observation. 

• Visual examination is important, but statistical tests and technical decision criteria are needed.

• PH parametric models are inherently coherent with the need to evaluate a difference between the arms 
survival curves. Validating the PH assumption is critical to the use of  these models. 

• Individual and AFT models can offer a good alternative to PH models when the PH assumption is not 
validated. 

• More flexible models, such as piecewise models, can offer a robust alternative to PH/AFT or individual 
models when hazard rates do not follow clear patterns. 

• Analysts looking to extrapolate survival data should compare models following a clear process, and not 
restrict themselves to simpler models.

In the case study presented, the optimal model was identified as the AFT Parametric model using a Gamma 
distribution with a treatment covariate for overall survival, and the Kaplan-Meier estimator for PFS. 

Having a strong decision-making process is important and can avoid generating bias. Selecting a method that is 
conservative and in line with the criteria should be a priority, rather than presenting the method that provided 
the highest marginal benefit. 

Finally, the optimal model should be included in economic analysis or HTA analysis under the base case 
scenario, but the second best model should be included in the sensitivity analysis. 
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APPENDICES

Appendix A

PH: proportional hazard; AFT: accelerated failure time; SF: survival function
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Appendix B

Appendix C

 Proportional Hazard Proportional Odd
Knots AIC BIC AIC BIC

0 1946.4 1961.9 1936.4 1951.8
1 1937.2 1960.4 1938.2 1961.4
2 1940.2 1971.1 1940.8 1971.7
3 1943.8 1982.4 1944.8 1983.5
4 1946.9 1993.3 1948.2 1994.6

AIC: Akaike information criterion; BIC: Bayesian information criterion

Appendix D

Criteria Recommendation
Model Types 1 2 3 4 5

(1) PH Parametric models with treatment covariate √ √ √ √ ! Weibull
(2) AFT Parametric models with treatment 
covariates √ √ √ √ !

Gamma

(3) AFT individual parametric model √ ! √ ! ! Log-logistic
(4) SF + parametric tale extrapolation NA √ √ √ √ Gamma
(5) Royston & Parmar flexible models √ √ √ √ 1 knot

PH: proportional hazard; AFT: accelerated failure time;  SF: survival function
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